


VisualMutator 2.0 – User Manual

A1. Overview

VisualMutator is a mutation testing tool and a Visual Studio extension that can be used
to verify quality of a test suite in the active solution. It operates by executing the tests
on automatically created original program copies (mutants), each containing one artificial
fault. The test suite quality is based on a number of killed mutants - programs in which
at least one test failed as a result of an artificial fault.

Features

• Creating first-order mutants by using built-in and custom mutation operators;

• Ability to view modified code fragments in C# and IL languages;

• Running NUnit and XUnit tests on generated mutants;

• Interactive user interface: ability to view details about any mutant right after the
start of the mutation testing process;

• Presenting results: the mutation score and an information about passed and failed
tests;

• Option to write detailed results to an XML file;

A2. Installation

The Visual Studio (Professional version or higher) version 2012 or 2013 IDE is required
to install and use the VisualMutator extension. In order to install VisualMutator, execute
the .vsix file and follow the instructions. The extension will be registered in Visual Studio
after relaunching the IDE. If VisualMutator was installed earlier, you must uninstall it
before installing the new version.

2



To uninstall VisualMutator from within Visual Studio, click menu item Tools -> Exten-
sions and Updates, choose VisualMutator from the list in the Extensions and Updates
window and click the Uninstall button.

A3. Getting started

VisualMutator consists of a one Visual Studio tool window that can be placed and resized
anywhere in the parent environment. Its dimensions may be freely customized; the vertical
layout is recommended however.

Tip:

If the VisualMutator tool window is not visible, open it by selecting menu item: View
-> Other Windows -> VisualMutator.

A3.1 Creating a mutation testing session

A mutation testing session, in the context of VisualMutator, is a single instance of a
coherent process involving automated program operations and feedback for the user. It
consists of creating and testing mutated program copies while allowing the user to control
the process and gain useful information about the quality of the test suite.

Note:

The Visual Studio solution should be built and up-to-date before creating a new
mutation testing session.

Note:

It is strongly recommended to ensure that all the tests pass before starting a mutation
testing session. If this is not the case, all mutants are going to be killed, leading to
invalid and useless results.

There are 2 approaches to starting a session: it can be run on the whole codebase or in a
context of a single chosen method.

3



• The first approach is invoked by clicking the New Session. . . button. The scope can
be further refined, however it should be noted, that starting the session on most of
the project code is most often a very time-consuming operation.

• If you do not need to measure the quality of the whole test suite at once, a more
ad-hoc approach is recommended. A limited-scope mutation session can be started
by right-clicking inside the body of a non-test method in the Visual Studio code
editor and choosing the Mutate and test. . . action. This is a fast and recommended
way to check the quality of the tests that call the selected method - the scope of
mutation testing is automatically narrowed.

Fig. A.1. VisualMutator - mutated code view

Regardless of the initial approach you choose, the mutation testing session creation win-
dow appears (fig. A.2):

4



Fig. A.2. VisualMutator - session creation window

A3.1.1 Running the session on the whole codebase

The type tree on the left, labelled Mutate, presents the types and methods detected in
the solution’s assemblies. The checkboxes can be used to deselect any nodes in order to
be excluded from the the mutation process.

Note:

All types containing tests should be deselected in the left pane to avoid mutating
them. A mutated test would, if run, cause the mutation session results to be inacurate.

The middle pane Run tests presents the tests detected in the codebase. They are to be
executed on every created mutant. By default, all tests are run; deselect any tests to turn
off their execution (i.e. the test that are not related to the code selected in the left pane).

In the right pane, available mutation operators can be deselected to exclude them from
the mutant creation process.

Overall, the tuning process performed by the user should include the following steps:

1. In the left pane, deselect any code elements that are not desired to be mutated in

5



the particular use case (for example the codebase that had been mutation-tested
before, or a project that is to be mutated at a later time, due to its size);

2. In the left pane, deselect any code that is strictly test-related (unit tests, functional
tests, test helper classes);

3. In the middle pane, deselect any tests that are not desired to be run (e.g. long-
running functional tests, or test that are unrelated to the code selected in the left
pane);

4. In the right pane, deselect any mutation operators that are not to be used (due to
a large number of equivalent mutants generated, for example);

A3.1.2 Running the session on a single method

When the session creation window is shown as a result of using the Mutate and test. . .
action on a method, it makes more choices automatic and not involving the user:

• In the left pane, only the specific method is selected;

• In the middle pane, only the tests invoking the method are selected. However, the
selection may require further tuning;

Regardless of the approach, you can tune the selections to suite your needs. It is possible
to manually tune the first approach to have its scope narrowed to the one similar to the
second approach.

A3.2 Starting the session

Clicking on the Start session button closes the window and starts the session process.
The session consists of the following steps:

1. Pre-check (testing unmodified assemblies);

2. Creating mutant list;

3. Instantiating and testing the mutants (possibly in parallel);

6



Current status of the session is visible in the upper-left corner of the VisualMutator
window.

The first step of a session is the pre-check, aiming to test unmodified assemblies. During
the pre-check, the test cases are executed on the unmodified program to ensure that all
pass. In case of a test failure, a warning window is displayed. After the pre-check, operators
selected before are used to generate information about all mutants, grouped by location
in the codebase.

The next, main, step is the testing of each mutant. For each mutant, all enabled test cases
are executed. During and after this process, you can view the details of a selected mutant
- the mutated code fragment and testing results (if the mutant has been already tested)
- fig. A.3.

Fig. A.3. VisualMutator - test tree view

The session’s big picture

Current overview of the running session is shown in the upper part of the VisualMutator
window:

7



• Number of mutants already tested in relation to all mutants;

• Number of mutants killed in relation to all mutants already tested and the mutation
score resulted from this division;

• The progress bar of the whole process;

The testing process can be paused by clicking the yellow Pause button and then resumed
by clicking the green (triangular) Resume button. It can be abandoned by clicking the
red (rectangular) Stop button, which prematurely finishes the testing process.

The testing process can also be controlled by clicking on a mutant. Clicked mutant will
be tested with the highest priority (while also displaying it’s source code).

The aggregated results of the whole session are available to save to XML after finishing
the mutant testing phase.

Mutant results

Each mutant has a label consisting of:

• Mutation operator identifier (e.g. ROR);

• Mutant id (e.g. 5);

• Name of the result of the change (e.g. Substraction);

• Current state (e.g. killed), also indicated by color of the square icon;

Possible mutant states are:

• Untested (light grey) – mutant is waiting to be tested;

• Creating (green) – mutant is being created or written to disk;

• Testing (blue) – mutant is being tested;

• Killed (grey) – mutant was killed by one or more tests, or by a testing timeout;

• Live (orange) – all tests passed on this mutant;

• Error (red) – an internal program error occurred while creating or testing the mu-
tant. A message regarding the error can be displayed by right-clicking the mutant;

8



Clicking on a mutant updates the tabbed view in the lower section of the window:

• Code tab - displays a decompiled code fragment (in C# or IL language) visuali-
zing the change the mutant consists of (fig. A.1); Green and red colors indicate
respectively added and removed lines as a result of the mutation.

• Tests tab - displays a tree containing the tests executed on the mutant, grouped by
namespaces and classes. Green squares represent passed tests, red squares - failed
ones. Right-clicking on a failed test gives an option to view a message describing
the cause of the failure;

Marking mutants as equivalent

If a live mutant, based on its code presenting the change, is believed to be equivalent,
it can be marked as such. To do this, right-click on it and choose the Mark as quivalent
context menu item. The equivalent mutant’s results are not counted towards the mutation
score.

Saving aggregated results

After testing has been finished, detailed mutation testing session results can be saved to
an XML file. Among the saved data, there are:

• Mutation score;

• Basic mutant information - outcome of mutant testing;

• Various timing statistics;

Click the Save Results button in the lower section of the window to cause the results saving
dialog to appear and select a valid path for a results file to be created or overwritten.
Options can be changed as well:

• Include detailed testing results - includes a results tree containing every test executed
on every tested mutant (the name and outcome of each test);

• Include code difference for each mutant - includes C# decompiled code presenting
the mutated code compared to the original program fragment;

9



Changing program options

Options window is available under the “O” button in the upper section of the main
program view. Possible options include:

• Source files processing threads - Set the number of background threads that prepare
unmodified program copies to be mutated later;

• Mutant processing threads - Set the number of simultaneous mutant processing ope-
rations. Each such task acts as a consumer of one unmodified program copy: it
mutates the program and executes the tests;

• Enable mutant code cache - Enable or disable the mutant code cache. Enabling
it causes every created mutant to be stored in memory (until a memory limit is
reached), resulting in faster visualization of code;

• Limit number of mutants - Set the maximum number of mutants to be created by
each mutation operator in one session;

• Other params - For developer use only;

The command line interface

Besides the regular interaction with VisualMutator in Visual Studio environment, the
command line access is also available. To use it, run the VisualMutator.Console.exe ap-
plication file. The argument format is constructed as follows: –<argName> <value>

Possible arguments are:

• sourceAssemblies – The ’;’-separated paths to assemblies to be mutated;

• testAssemblies – The ’;’-separated list of assemblies’ names to include the tests from;

• resultsXml – The path to store the xml result at;

• sourceThreads [optional, defaults to 2] – The number of original source processing
threads;

• mutationThreads [optional, defaults to 3]– The number of mutant processing thre-
ads;

10



• methodIdentifier [optional, defaults to the all code in all source assemblies] – An
identifier of a single method to mutation test. Specifing this argument will create
the session running in the context of a single method;

The command line interface is an optional way of interacting with VisualMutator in an
automatic way, when interactivity is not required.

11


	VisualMutator 2.0 – User Manual

